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We explore the nature of inertial equilibration of equatorial flows in the presence of
mean meridional and vertical shears of the basic state, with oceanic applications in
mind. The study is motivated by the observational evidence that the subthermocline
equatorial mean circulation displays nearly zero Ertel potential vorticity away from
the equator, when taking into account the non-traditional horizontal component of
the Earth rotation. This observed state precisely verifies the marginal condition for
inertial instability: a linear analysis for the equatorial β-plane confirms that the usual
condition of instability, namely that Ertel potential vorticity should be of opposite sign
to the vertical Coriolis parameter, remains valid even when the traditional approxima-
tion is relaxed. Analytical linear normal modes reveal that a meridional shear of the
basic state leads to a vertical stacking of equatorially-trapped zonal flows of alternate
signs, with a new centre of symmetry located at the dynamical equator. A vertical
shear of the basic state causes a meridional stacking of extra-equatorial zonal flows.

In an inviscid framework, a two-dimensional formulation is ill-posed and we resort
to non-hydrostatic viscous simulations to determine the nonlinear normal forms of
the system. The influence of a small-scale eddy diffusivity and a large-scale Rayleigh
damping on the equilibrated vertical scale is determined numerically. The nonlinear
equilibration occurs through a steady-state bifurcation from a basic state without
jets to another steady state with secondary jets of alternate signs. The final state
corresponds to eastward jets located on the geographic equator, while westward jets
are located near the dynamical equator. These results are consistent with in situ
observations of equatorial deep jets.

The analogy between the equatorial meridional shear flow and the cylindrical
Couette–Taylor flow with an axial density stratification is detailed. There is a strong
similarity in the general symmetries and nonlinear normal forms of the two problems.
Similarly to the homogeneous Couette–Taylor flow, the gap width between the two
cylinders is important for determining the axial scale of the secondary flow through
the Reynolds number. For the equatorial problem, an upper bound for the height
scale of inertial jets is such that the corresponding equatorial radius of deformation
times

√
2 fits between the geographic and dynamic equators.

One of our main conclusions is that the raison d’être of the observed region of zero
Ertel potential vorticity is to facilitate angular momentum exchanges between the
two hemispheres and inertial deep jets are the byproducts of this angular momentum
mixing.

† Present address: PMEL, 7600 Sand Point Way, Seattle, WA 98115, USA.
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Figure 1. Time-mean zonal velocity in the Central Pacific resulting from an 18 month average
(February 1982–June 1983) from the PEQUOD data set (from Firing 1987).

1. Introduction
It is now recognized that the occurrence of symmetric instability in the atmosphere

(Emanuel 1988) is often observed in regions of near neutrality to inertial instability, for
which the Ertel potential vorticity of the flow is zero (Hoskins 1974). This zero-Ertel-
potential vorticity state precisely corresponds to the observed mean state of oceanic
equatorial flows in wide regions below the thermocline, as will be demonstrated
below. This observation has motivated the present systematic study of equatorial
inertial instability which is triggered by both vertical and latitudinal shears. The aim
is to find a rationale for the geometry of the deep zonal jets which are observed
in the equatorial subthermocline mean flow, well beneath the eastward undercurrent
which lies at about 200 m depth (figure 1, taken from Firing 1987). One system of
zonal jets which are located between 300 and 1800 m, the so-called equatorial deep
jets, has a slight meridional offset but is strongly trapped within 1◦ of the equator,
and presents a very small aspect ratio of vertical to horizontal scales. Another set
of jets reaches its maximum away from the equator at about 1.5◦, has larger vertical
scales, and displays a high degree of symmetry about the equatorial plane. What is
striking in figure 1 is the stacking of zonal flows of alternate signs in both the vertical
and meridional directions. Such a structure of the mean flow, with alternate-signed
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jets which appear to be intrinsic parts of the time-mean state, raises the questions
(i) what is the mechanism of the jets formation and (ii) how do they equilibrate at
finite-amplitude? Equatorial deep jets are a ubiquituous feature of the circulation in
all three oceans, since their original discovery by Luyten & Swallow (1976) in the
western Indian ocean. A simple explanation has been given in the literature in terms
of surface-forced vertically propagating linear waves (Wunsch 1977; McCreary 1984;
McCreary & Lukas 1986), but it is difficult to get energy at low frequencies and
high vertical wavenumbers to penetrate to great depth because of reflections from the
thermocline (Gent & Luyten, 1985) and of the inherent small vertical group velocities.
Overall, observations of a systematic and coherent vertical shift of the deep jets have
remained elusive, and the propagation issue still lacks convincing evidence (Ponte &
Luyten 1989). Most theoretical studies (references cited above; Eriksen 1981; Ponte
1988) have relied on linear equatorial wave ideas. On the other hand, Kawase (1987)
and Wang, Moore & Rothstein (1994) explored the possibility that the deep jets are
forced by deep western boundary currents, but their solutions are transient, and the
issue of the equilibration of time-mean structures could not be addressed, as was the
case for the studies which invoked vertical propagation effects.

In contrast, the process which is put forward in the present work is based on a
cellular inertial instability mechanism, which is local and a propagation mechanism
from a distant energy source is not required. Inertial instability corresponds to the
occurrence, within a rotating frame of reference, of what is more generally known as
centrifugal instability, when an initially adverse distribution of angular momentum
triggers the onset of secondary flows which act to redistribute angular momentum
(Rayleigh 1916). This instability can be experimentally realized in a set-up of two
concentric cylinders which can rotate independently (Taylor 1923), in particular when
the inner cylinder reaches a critical speed while the outer one is maintained fixed.
For unstable conditions the azimuthal Couette flow is replaced by cellular patterns
in which the fluid travels in helical paths around the cylinders in layers of vortices –
now known as Taylor vortices. The corresponding fluid dynamics problem is referred
to as the Couette–Taylor problem, and it has become in recent years a paradigm
for exploring the complexity of hydrodynamical instability and pattern formation.
Recent monographs on the topic are Chossat & Ioss (1994), which deals with the
problem from the mathematical point of view of bifurcation theory and symmetry,
while Koshmieder (1993) puts more emphasis on laboratory experiments. A general
overview of recent research is given in Tagg (1994), and it may be a useful introduction
to the nearly 2000 papers connected with the Couette–Taylor problem. Yet among
these works, very few have addressed the case of a stable, axial stratification in density,
which is the relevant configuration for geophysical applications. We shall prove in the
present paper that there is a close analogy between the equatorial inertial instability
problem with latitudinal shear and the Couette–Taylor problem in the presence of
an axial density stratification. This motivated Boubnov, Gledzer & Hopfinger (1995)
and Boubnov et al. (1996) to perform laboratory experiments for the stratified case,
and their results have been reproduced in the direct numerical experiments of Hua,
Le Gentil & Orlandi (1996). The main effect of a density stratification is to reduce
the height of the axisymmetric Taylor vortices and to cause the formation of density
layers of small aspect ratio. The first flow transition is clearly axisymmetric and is
stationary for a Prandtl number of 1. Further flow transitions, which are obtained at
larger speeds of the inner cylinder, correspond to larger aspect ratios of the density
layers, can have an oscillatory temporal behaviour and can become three-dimensional.

For both the atmosphere and ocean, equatorial regions correspond to the location of
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the maximum angular momentum of the fluid and small deviations in the symmetries
of the flow are likely to trigger centrifugal instabilities. Symmetry breaking is
immediately induced by the existence of a non-zero latitudinal shear at the equator
and low-latitude regions are thus privileged locations for the occurrence of inertial
instability. This may explain why structures which bear some resemblance to the
equatorial deep jets have also been observed in the equatorial middle atmosphere
through satellite observations (Hitchman et al. 1987). That work first documents the
occurrence of planetary-scale disturbances in the equatorial lower mesosphere, which
consist of vertically stacked temperature extrema of alternating sign, persist for as
long as two weeks and do not propagate. Their very small vertical-to-meridional
aspect ratio has led to their labelling as ‘pancake structures’ and their occurrence is
confined to regions of very weak or negative inertial stability. The recent observational
study by Knox (1996), which is based on the more comprehensive Upper Atmosphere
Research Satellite data set, further supports the above interpretation. Near the
solstices, regions of anomalous potential vorticity (PV) tend to develop negative PV
in the northern hemisphere in December, positive PV in the southern hemisphere in
June, and small aspect ratio layered structures are confined in the equatorial upper
stratosphere/lower mesosphere areas.

Among the theoretical studies on inertial instability in the equatorial atmosphere,
authors like Boyd & Christidis (1982), Stevens (1983) and Dunkerton (1981, 1983)
have focused upon the linear effects of latitudinal shear, while Zhao & Ghil (1991)
have addressed the nonlinear inertial instability of both latitudinal and vertical shears
in a two-layer formulation for an a priori dominance of low vertical modes. For
the most part however, conceptual developments of inertial instability dynamics have
been obtained in the context of atmospheric conditional (moist) symmetric instability,
as first proposed by Bennetts & Hoskins (1979). An extensive treatment of the topic
can be found in the book by Emanuel (1994) and related issues of the nonlinear
dynamics of upscale transfer are addressed by Thorpe & Rotunno (1989) for the dry
problem. For this area of atmospheric mesoscale dynamics, the emphasis has mainly
been on the effect of vertical shear and the so-called slantwise convection problem.

An unresolved issue in inertial instability is the problem of the vertical scale
selection, which a linear instability framework cannot resolve, even in the presence of
a realistic small vertical diffusion. Zonal asymmetries (Dunkerton 1983; Stevens &
Cieselski 1986), as well as zonally localized shears and non-parallel flows have been
studied (O’Sullivan & Hitchman 1992; Dunkerton 1993; Clark & Haynes 1996) in
that respect within a hydrostatic framework.

Our approach here is based on a Taylor expansion of the absolute angular mo-
mentum of the flow in the vicinity of the neutral condition of instability, i.e. the basic
states correspond to supercritical flows which are close to the marginal state of zero
Ertel PV (§2). In §3 we make a short observational digression to provide evidence of
nearly zero-Ertel PV in the time-mean subthermocline equatorial flow. We return to
theoretical considerations in §4 to show that the geometry of the equatorial jets is best
understood in terms of two parameters which combine the effects of latitudinal shear,
latitudinal curvature of the flow and vertical shear. The two parameters are (i) the
latitude of the dynamical equator, and (ii) a pseudo-Richardson number. The nonlin-
ear equilibration regime of zonally symmetric latitudinal shear flows is then studied
through non-hydrostatic numerical simulations in §5. The two first flow regimes
correspond respectively to a stationary and a Hopf bifurcation and the energetics of
their equilibration are detailed in §5.1. The role of large-scale damping is described
in §5.2. The analogy between the nonlinear normal forms of the equatorial inertial
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instability problem and the stratified Couette–Taylor (CT) problem is illustrated in
§5.3, That subsection may be skipped by readers who are more interested by the
geophysical application of inertial instability. Section 5.4 addresses the issue of the
vertical selection problem. Finally, we explore in §6 the broader implications for the
general circulation of the existence of regions of mean zero Ertel PV.

2. Generalized inertia of equatorial shear flows
We assume that both the basic state and secondary flows are zonally symmetric†

and depend only on the meridional and vertical positions y and z. Such an assumption
can be justified by the very long zonal scales of the equatorial deep jets (Ponte &
Luyten 1989), and is appropriate for a first approach. Let (u(y, z), 0, 0) and ρ(y, z) be
the basic-state velocity and density fields. The vertical Coriolis parameter is f = βy
in the equatorial beta-plane approximation and geostrophic balance implies

βyu+
1

ρ0

py = 0, (2.1)

where p is the pressure field. The vertical momentum equation is

− γu+
1

ρ0

pz = − g

ρ0

ρ, (2.2)

where γ = 2Ω is the horizontal Coriolis parameter, which is neglected in the traditional
approximation (Phillips 1966) but is retained in the present work, in view of its
quantitative importance in the oceanic observations which are detailed in §3. From
(2.1) and (2.2) we find

g

ρ0

ρy = γuy + βyuz, (2.3)

which expresses the thermal wind balance when both the vertical and horizontal
components of the Earth rotation vector Ω are retained.

Equations of motion for the velocity disturbances (u, v, w) and density are

d

dt
u+ v(uy − f) + w(uz + γ) = 0,

d

dt
v + fu+

1

ρ0

py = 0,

d

dt
w − γu+

1

ρ0

pz +
g

ρ0

ρ = 0,

d

dt
ρ+ vρy + wρz = 0,


. (2.4)

where d/dt denotes the rate of change for a material element and will be made explicit
below.

Let Ψ be a streamfunction for displacement in the meridional plane, so that

v = −Ψz, w = Ψy (2.5)

because of the incompressibility condition

vy + wz = 0.

† This assumption is at the origin of the terminology of symmetric instability which is often used
in the atmospheric sciences for referring to inertial instability.
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The advection operator is thus d/dt = ∂/∂t + J(Ψ, .), where J is the Jacobian, since
v = w = 0, hence Ψ = 0.

Eliminating the pressure disturbance p from (2.4), and a being the radius of the
earth, we obtain the equations for the conservation of the total angular momentum
with respect to the Earth axis of rotation

M̃ = a
(
u+ u+ γz − β 1

2
y2
)
, (2.6)

the zonal component ω1 = ∇2Ψ of vorticity ω, and total density:

d

dt
M̃ = 0,

d

dt
∇2Ψ − fuz − γuy +

g

ρ0

ρy = 0,

g

ρ0

d

dt
ρ+ v(fuz + γuy)− wN

2
= 0,


(2.7)

where N2
(y, z) = −gρz/ρ0.

The second equation in (2.7) shows that the time tendency of zonal vorticity is
forced by the thermal wind imbalance of the disturbances, and is hence consistent
with our assumption that Ψ ≡ 0 since the basic state verifies (2.3).

Linearizing equations (2.7) by replacing d/dt by ∂/∂t and eliminating u and ρ, we
obtain the Eliassen–Sawyer equation (Eliassen 1951; Sawyer 1949) for the meridional
streamfunction Ψ

∂2

∂t2
∇2Ψ +L(Ψ ) = 0, (2.8)

where the operator L is

L =
∂

∂z

(
A
∂Ψ

∂z
+ B

∂Ψ

∂y

)
+

∂

∂y

(
B
∂Ψ

∂z
+ C

∂Ψ

∂y

)
, (2.9)

and coefficients A, B, C are only functions of the mean shears and stratification

A = f(f − uy), B = f(γ + uz), C =N2
+ γ(γ + uz).

Stevens (1983) has discussed an equation which is equivalent to (2.8) for the case of
spherical geometry. One can physically interpret the operator L as expressing the
generalized inertia of the basic state in the presence of mean shears and stratification.
The symmetry of the cross-derivative terms in (2.9) implies that L is self-adjoint and
this important property results from the thermal wind balance of the basic state (2.3).
If one assumes a time dependence of the form

Ψ (y, z, t) = exp(σt)Ψ̂ (y, z),

where σ may be complex, the self-adjoint character of L implies that σ2 is real. This
can be checked by multiplying (2.9) by the complex conjugate Ψ ∗ and by integrating
over the whole domain, assuming Ψ = 0 at the boundaries. This yields

σ2

∫ ∫
|∇Ψ̂ |2dydz =

∫ ∫ A ∣∣∣∣∣∂Ψ̂∂z
∣∣∣∣∣
2

+ B

(
∂Ψ̂ ∗

∂z

∂Ψ̂

∂y
+
∂Ψ̂

∂z

∂Ψ̂ ∗

∂y

)
+ C

∣∣∣∣∣∂Ψ̂∂y
∣∣∣∣∣
2
 dydz.

The integrals on both sides of the equality being pure real numbers, this proves
the above statement. The growth rate σ is thus either pure real or pure imaginary
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and possible modes are either growing/decaying or purely oscillatory. The pure
real character of σ for the growing solutions implies that they are endowed with a
cellular instability character, by which structures grow in place and do not involve
any propagation effect. Restating the above result more concisely, the symmetry of
the generalized inertia operator L, which is verified if the basic state complies with
thermal wind balance, leads to the distinctive cellular character of inertial instability.
This key property is also at the origin of the observed sequence of flow transitions in
the Couette–Taylor problem (Chossat & Ioss 1994).

A necessary criterion for instability is that the operator L is hyperbolic (Ooyama
1966),

B2 − AC > 0,

or

f(f − uy)
[
N2

+ γ(γ + uz)
]
− f2(γ + uz)

2 6 0. (2.10)

Introducing the Ertel potential vorticity of the basic state as

QE = −[2Ω+ ω] · g ∇ρ
ρ0

,

g ∇ρ
ρ0

= (0, fuz + γuy,−N
2
),

so that

QE = (f − uy)
[
N2

+ γ(γ + uz)
]
− f(γ + uz)

2, (2.11)

the instability condition (2.10) is thus identical to

fQE 6 0. (2.12)

This is the well-known condition for the inertial instability of a stratified flow (Hoskins
1974), which replaces the Rayleigh (1916) condition of an adverse angular momentum
distribution in the case of a stratified fluid. The usual condition (2.12) thus remains
valid even when one relaxes the traditional approximation and takes into account the
horizontal component of the Earth rotation vector. For zonally symmetric flows, e.g.
Stevens (1983), the expression for Ertel PV can also be rewritten as

QE =
g

a ρ0

J(M, ρ).

This expression states that the inertial stability depends upon the angle between
isopleths of angular momentum and isopycnals, and the neutral condition fQE = 0
is equivalent to saying that the angular momentum is uniform on density surfaces.

Oceanographic values of the buoyancy frequency N are around 2 × 10−3 s−1

for the equatorial subthermocline, and around 10−2 s−1 in the equatorial upper
stratosphere/lower mesosphere (Hitchman et al. 1987), so thatN � γ and dominates
the quantity within square brackets in (2.11). In general, for (f − uy) 6= 0, the first
expression in the right-hand side of (2.11) is much larger than f(γ + uz)

2, because of
the very stable mean stratification of equatorial regions. However, for locations where
the absolute vertical vorticity (f − uy) ≈ 0, the second term can play a quantitatively
significant role in the Ertel potential vorticity distribution.

The two classes of shear flow which can trigger inertial instability can be readily
identified from an examination of the expression for Ertel potential vorticity which is
given in (2.11).
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The case f(f − uy) < 0 and uz + γ = 0 is the analogue of the usual barotropic
inertial instability problem (Dunkerton 1981; Stevens 1983) when the traditional
approximation is relaxed.

The case uz + γ 6= 0 and f − uy = 0 corresponds to slantwise convection instability
(Emanuel 1994), in the special case where the small deviation from the marginal state
QE = 0 is occurring only in the z-direction. In contradistinction, previous studies of
slantwise convection had chosen basic states where both uz + γ 6= 0 and f − uy 6= 0,
so that departures from the marginal state are more complex to study.

3. Evidence of nearly zero Ertel potential vorticity
At this point we want to present some observational evidence that the subthermo-

cline equatorial mean circulation displays values of nearly zero Ertel PV away from
the equatorial plane y = 0. For that purpose, we have replotted the same data as
that of figure 1 in a different way. Figure 2(a) displays the depth profiles of mean
zonal velocity for five different latitudes ranging from −1◦ to + 1◦ of latitude. In the
depth range from 300 to 1800 m, there are clearly two distinct scales in the vertical: a
large-scale linear vertical shear, upon which the smaller vertical scale of the deep jets
is superposed. We have plotted on the same figure a dashed line, which is defined by
u = −γz, where γ = 2Ω is the horizontal Coriolis parameter defined in §2. The largest
vertical scale of the time-mean zonal velocity field is thus close to a value which
counteracts the effect of the horizontal non-traditional Coriolis parameter for depths
ranging from 300 to 1800 m. This observation has led us to take into account this
term in the derivation in §2 of the condition for inertial instability on an equatorial
beta-plane. On the other hand, figure 2(b) displays the meridional profile of the
mean zonal velocity at a given level (600 m). Within a band of 1.2◦ latitude, the
observed mean flow closely follows the dashed parabola defined by u = 1

2
βy2, which

counteracts the effect of the traditional vertical Coriolis parameter f = βy.
The implication of both figures 2(a) and 2(b) is that the largest scale of the

mean flow below the thermocline (which lies above 250 mat this longitude of the
middle Pacific), has adjusted itself so as to cancel almost completely the gradient of
angular momentum which is induced by the solid Earth rotation, in both the y- and
z-directions.

The time-mean flow therefore approaches a state of uniform angular momentum,
zero Ertel PV limit, which is precisely the neutral condition for inertial instability,
even when the traditional approximation is relaxed (§2). Furthermore, an order of
magnitude for the latitudinal extent of the region of zero PV at a given depth can be
derived as follows. If the boundary of the zero-PV region coincides with an isopleth of
the absolute angular momentum induced by the solid Earth rotation, M = 1

2
βy2− γz,

when the non-traditional Coriolis term is taken into account, then at the vertical
distance from the bottom of the zero-PV region of δz = (1800 − 600) = 1200 m,
which corresponds to figure 2(b), the latitudinal width should be δy = (2 a δz)1/2 ≈
124 km , since γ/β = a. This value of δy is quite consistent with the latitudinal extent
of 1.2◦found in figure 2(b). Other levels of westward flows in the data set of figure 1
also display the same cancellation tendencies as in figure 2(b), with a general decrease
of δy with δz, consistently with the above argument. The general relevance of these
observations of zero Ertel PV to the general circulation of equatorial subthermocline
regions remains however to be assessed from larger data sets. There are other
instances of near-uniform angular momentum in y which have been reported for
both the equatorial upper ocean (Gouriou & Toole 1993) and the tropical troposphere
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Figure 2. (a) Depth profiles of zonal time-mean velocity from PEQUOD at −0.5◦, 0◦, 0.5◦, 1.0◦

latitude. The dashed line is defined by u = −γz. (b) Meridional profile of zonal time-mean velocity
from PEQUOD at the 600 mlevel. The dashed parabola is defined by u = 1

2
βy2.

(Hoskins 1991), but the traditional approximation has been retained in these works,
and no assessment of zero Ertel PV due to the γz-term contribution is performed.

In the absence of any mean flow, the main physical consequence of taking γ 6= 0
is the induced coupling of the barotropic and baroclinic free modes of motion, e.g.
Miles (1974). The analytical difficulty which is caused by this coupling of the free
modes may explain the wide usage of the traditional appproximation which has been
made in the atmosphere-ocean literature. We have some observational evidence that
the time-mean flow below the equatorial thermocline is close to uz + γ = 0, which
will be shown in §4 to be the condition for decoupling the barotropic and baroclinic
inertial modes. The decoupling of inertial modes can thus be retrieved locally even
for γ 6= 0.

4. Simple inviscid hydrostatic solutions
We study here the two limiting cases mentioned at the end of §2 in order to

gain some insight into which parameters govern the geometry of the stacking of the
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secondary flow disturbances. We consider a basic state of the flow such that

u(y, z) = u0 + εy + δ 1
2
y2 + uzz. (4.1)

Using the notation

A = β(β − δ)y2 − εβy,
Ñ2

0 =N2
+ γ(γ + uz),

ũz = uz + γ,

the angular momentum of the basic state is

M = a(u0 + εy − (β − δ) 1
2
y2 + ũzz). (4.2)

For hydrostatic dynamics, the zonal vorticity reduces to ω1 = ∂2Ψ/∂z2, and the
corresponding Eliassen–Sawyer equation (2.8) is

(σ2 + A)Ψzz + Ñ2
0Ψyy + 2βyũzΨyz + βũzΨz = 0, (4.3)

where uz is assumed constant as the stratification frequency Ñ2
0.

Introducing the new set of variables (y, ξ) with

ξ = z − βũz

Ñ2
0

y2

2
, (4.4)

we look for solutions of the form Ψ = Ψ̌ (y) exp(ikξ), where k is a pseudo-vertical
wavenumber in the new set of variables (y, ξ).

Setting

y∗ = (y − y0)/λ, y0 = sεβ/(2β2
n ), λ2 = Ñ0/(kβn),

βn = β|1− 1/R̃i|1/2, s = sign (1− 1/R̃i), 1/R̃i = ũ2
z/Ñ2

0 + δ/β,

}
. (4.5)

equation (4.3) becomes

Ψ̌y∗y∗ − s y∗2Ψ̌ =
k

Ñ0βn

(
σ2 − sβ2

ny
2
0

)
Ψ̌ . (4.6)

Following the sign of s the growing solutions (σ2 > 0) to this differential equation will
be either equatorially trapped or extra-equatorial, since the solutions will be of the

Hermite-function type or of the parabolic-cylinder-function type. The parameter R̃i
is an effective Richardson number, in the presence of a meridional parabolic profile
of the mean state, and the limit between equatorially trapped and extra-equatorial

growing modes corresponds to R̃i = 1. The other relevant parameter is y0 which
is the new centre of symmetry of the solutions and has been named the dynamical
equator by Stevens (1983), using a concept which had been originally introduced by
Boyd (1978), in a study of the effects of a mean shear on equatorial waves.

4.1. Equatorially trapped structures

The solutions of Dunkerton (1981) and Stevens (1983) correspond to s = 1, y0 6= 0
in (4.6), and ũz ≡ 0, i.e. the supercriticality is only due to the latitudinal shear
of the basic state. The barotropic inertial problem, when formulated with the
traditional approximation, has therefore the same mathematical structure as our
present formulation which retains the horizontal component of the Coriolis force and
moreover assumes uz +γ = 0. The streamfunction for overturning meridional motions
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Figure 3. Most unstable mode for (a) zonal velocity perturbation u(y, z) and (b) streamfunction
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(d) for a basic state defined by (4.14).

can be expressed as Hermite functions which are centred around the dynamical
equator y0:

Ψ ∝ exp(− 1
2
y∗

2
)Hn(y

∗), (4.7)

where Hn(y
∗) is the Hermite polynomial of order n. The growing modes are triggered

by the existence of a latitudinal shear (y0 6= 0 for ε 6= 0). The zonal velocity
perturbation can be obtained from (2.4) and (2.5):

u = (uy − f)
∂Ψ

∂z
∝
(
y∗ − 2y0

λ

)
exp(− 1

2
y∗

2
)Hn(y

∗). (4.8)

The velocity and streamfunction fields of these linearly unstable modes are illustrated
in figures 3(a) and 3(b) respectively, for the case where the dynamical equator
y0 = ε/(2β)≈ 46 km , for a vertical wavelength of h = 100 m and for the gravest
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latitudinal mode n = 0. All cases hereafter use β = 2 × 10−11 m−1 s−1 and Ñ0 =
2× 10−3 s−1.

The overturning motions are centred around y = y0, while the zonal velocity is
slightly more distorted latitudinally, and verifies u = 0 at y = 2y0.

The inviscid solutions (4.7) cannot resolve the issue of the vertical scale selection
problem, since their growth rate is

σ2 = β2
n y

2
0 − (2n+ 1)

Ñ0βn

k
(4.9)

(Stevens 1983). The growth rate increases with vertical wavenumber k, although
it remains bounded by the upper limit σmax = |βn y0|. Inertial instability is thus
manifested most readily in the smallest vertical scales, and in the gravest (n = 0)
latitudinal mode. This lack of a high-wavenumber cutoff in the growth rate is
an intrinsic feature of the inviscid formulation of the centrifugal/inertial instability
problem for both the unstratified and stratified case (Boubnov et al. 1995). Vertical
diffusion needs to be invoked in order to regularize the problem at high wavenumbers
(Dunkerton 1981).

On the other hand, an inviscid low-wavenumber cutoff can be computed from
(4.9):

k0 =
4βnÑ0

ε2
(1− 1/R̃i), (4.10)

which simplifies to

k0 =
4βÑ0

ε2
, (4.11)

in the case where δ = ũz = 0. This inviscid lower bound can be interpreted
geometrically by recognizing that the equatorial radius of deformation λ0 which
corresponds to k0 is

λ0 =

[
Ñ0

β k0

]1/2

=
ε

2β
≡ y0,

and thus fits exactly between the geographical equator and the dynamical equator.
In summary, linear inviscid theory may explain the tendency for a preferred

vertical stacking of small-aspect-ratio structures, which do not propagate. However,
the vertical scales predicted by a linear framework are crucially dependent upon the
specification of vertical diffusion. We shall see however in §5 that nonlinear advective
effects induce an upscale transfer towards the reciprocal of the low-wavenumber
cutoff (4.11). The analytical solution which has been detailed in this subsection may
be relevant for the initial linear growth of the equatorial deep jets of figure 1.

4.2. Extra-equatorial structures

The solutions for s = −1 are parabolic cylinder functions and the streamfunction of
secondary motions is

Ψ ∝ Ho

(
k

Ñ0βn

(
σ2 + β2

ny
2
0

)
, y∗

)
, (4.12)

following the notations of Morse & Feschbach (1953, p. 1399) for the odd solution

Ho versus y∗, and corresponds to eigenvalue k(σ2 + β2
ny

2
0)/(Ñ0βn).
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We consider first the limiting case with ε ≡ y0 ≡ 0 and f − uy = 0, and ũz 6= 0, i.e.
the supercriticality is only due to the vertical shear of the mean flow. A characteristic
property of parabolic cylinder functions is that they become oscillatory away from

y∗ = 0 beyond a turning latitude defined by y∗ ≈ 2(kσ2/(Ñ0βn))
1/2. This result also

holds for the zonal velocity perturbation which verifies

u ∝ ũz
∂Ψ

∂y
,

under the above simplifying assumptions. The zonal velocity perturbations, which are
symmetric with respect to the geographical equator (since Ψ is odd), also become
oscillatory away from the equator and reach their maximum away from the equator.
In particular, the critical mode (σ = 0) corresponds to

Ψ ∝ (y∗)1/2 J 1/4(
1
2
y∗2),

u∝ (y∗)3/2 J−3/4(
1
2
y∗2),

}
(4.13)

Solution (4.13) is such that the amplitude of the oscillations in u grows with y and is
thus only valid in a latitudinally bounded domain, with a maximum amplitude at the
boundary. This limiting case clearly illustrates the extra-equatorial character of the
solutions.

More generally, the linear unstable modes given by (4.12) have growth rates which
are determined by the geometry of the boundaries of the unstable domain and have
to be determined numerically. The growing modes in u and Ψ are illustrated in figures
3(c) and 3(d) for the case of a westward basic flow such that

u(y, z) = Uw

(
1− β

2|Uw|
y2

)(
1− uz

|Uw|
(z + h)

)
, Uw < 0. (4.14)

Such a choice corresponds to y0 = 0 and verifies f − uy = 0 at the bottom of the

domain z = −h, and R̃i = 1 + ũz/Ñ2
0 > 1 at that depth. Figures 3(c) and 3(d)

correspond to Uw = −0.30 m, h = 200 m and uz = 1.5 × 10−3 s−1. The growing
modes display a high degree of symmetry with respect to y = 0 and show a tendency
for a meridional stacking of structures which is characteristic of slantwise convection.

Furthermore, for ũz 6= 0, and s = −1, the largest growth rates in (4.6) will
correspond to the largest vertical structures. The linear modes (4.12) may be relevant
for the initial growth of the extra-equatorial features of figure 1, which present larger
vertical scales than the equatorially trapped deep jets. Such solutions have not yet
been examined in the literature to our knowledge. Much more observational and
theoretical work is needed for characterizing the extra-equatorial time-mean flow
structure and choice (4.14) is an oversimplification of the westward flow beneath the
equatorial undercurrent in figure 1.

Finally, since the only parameter which determines the nature of the differential

equation (4.6) is 1/R̃i = ũ2
z/Ñ2

0 + δ/β, the effect of a vertical shear (ũz 6= 0) is
similar to the effect of a westard curvature of the basic state (δ > 0), for triggering
extra-equatorial solutions.

5. Finite-amplitude non-hydrostatic simulations
In the remainder of the paper, we shall address the case of a supercritical latitudinal

shear with ũz ≡ 0, and leave for further investigation the issue of the case of
supercritical vertical shear. The nonlinear equilibration is studied through numerical
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simulations of non-hydrostatic viscous/diffusive flows in the presence of a prescribed
unstable basic state. The initial-value problem which is integrated numerically is

d

dt
(M̃) = (Dν − r)(M̃ −M),

d

dt
∇2Ψ + fuz + γuy −

g

ρ0

ρy = (Dν − r)∇2Ψ,

g

ρ0

d

dt
ρ+ v(fuz + γuy)− wN

2
(

1

Pr
Dν − r

)
ρ.


(5.1)

Initial conditions correspond to small disturbances which are superposed on the

basic state and the flow is forced by a relaxation of the dynamical variables (M̃, Ψ, ρ)
to the unstable basic state (M, 0, 0), which is an exact solution of system (5.1). The
relaxation is performed through the operator (Dν − r), which acts both on the small
scales, through the eddy viscosity operator Dν , and on the energy-containing scales,
through a Rayleigh damping term, where the time scale r−1 is chosen such that
r � σmax, where σmax is the maximum linear growth rate of the problem.

The operator Dν is assumed to be self-adjoint and such that
∫∫
Ψ ∗Dν(∇2Ψ )dydz

is a real positive number, Ψ ∗ being the complex conjugate of Ψ . A detailed study
of the role of the Prandtl number Pr for the stratified centrifugal/inertial instability
problem is given in Hua et al. (1996) and we show there that below a critical Prandtl
number Prc, such that Prc > 1, eigenvalues of the linear growing modes remain
purely real. Since it is plausible that small-scale turbulence is responsible for the eddy
viscosity and diffusivity in oceanic flows, we choose here Pr = 1, and thus preserve
the self-adjoint character of the right-hand side of (5.1).

The eddy viscosity operator Dν is prescribed as

Dν =

[
νz
∂2

∂z2
+ νy

∂2

∂y2

]
,

where νz and νy are constant vertical and horizontal eddy viscosities. Our choice of

νy/νz ≈ πÑ0/(2βh) is based on the assumption that the horizontal scale is πλ, where

λ is the equatorial radius of deformation λ = (Ñ0h/(2πβ))1/2 which corresponds to
the vertical wavelength h. This yields orders of magnitude of νy/νz ≈ 106 for our
applications. For flows with very small aspect ratios, anisotropic diffusivities in the
vertical and horizontal directions have been commonly used since Bryan (1969) to
produce convection-dominated flows, otherwise conduction effects can dominate the
solution (Quon & Ghil 1995).

The influence of a damping term which only acts on the density field (Newtonian
cooling) has been considered by Clark & Haynes (1994) within a linear framework.
They show that such a choice introduces complex eigenvalues and moreover sup-
presses the lower bound k0 (4.10) of the band of unstable vertical wavenumbers. In
contradistinction, our choice of a Rayleigh damping which acts identically on all
dynamical variables, preserves the self-adjoint property. We shall discuss in the next
section its role in the nonlinear equilibration of the solutions.

The viscous Eliassen–Sawyer equation is[
∂

∂t
− (Dν − r)

]2

∇2Ψ +L(Ψ ) = 0. (5.2)

We have seen in §3 thatL(Ψ ) is self-adjoint (e.g.
∫∫
Ψ ∗L(Ψ )dydz is a real number),

so that multiplying (5.2) by Ψ ∗, integrating over the domain and subtracting the
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complex-conjugate expression yields

(σ − σ∗)
[
(σ + σ∗)

∫ ∫
|∇Ψ |2dydz + 2

∫ ∫
Ψ ∗Dν(∇2Ψ )dydz

]
= 0. (5.3)

Growing modes correspond to (σ + σ∗) > 0, so that the term within square brackets
is always positive and equation (5.3) implies that σ = σ∗ and the cellular character of
the linear instability is preserved.

Boundary conditions are periodic in the vertical, while in the meridional direction
Dirichlet boundary conditions are prescribed for u,Ψ , and no-flux conditions are
prescribed for ρ (see Thorpe & Rotunno 1989 for a discussion of the physical
meaning of the boundary conditions in the symmetric instability context).

5.1. Nonlinear equilibration

We have performed a numerical integration of system (5.1), with the same parameters
as those used for the linear solutions of figures 3(a) and 3(b), e.g. y0 ≈ δu/(2Lβ) is
about 46 km and the maximal inviscid growth rate σmax = βy0 ≈ 0.92× 10−6 s−1. The
vertical eddy viscosity νz = 0.5 × 10−4 m2 s−1 and νy/νz = 1.5 × 106, and Rayleigh
damping is chosen as r = 1

4
σmax. The domain height is 200 m, the domain width is

300 km on each side of the equator. The non-hydrostatic model is initialized with the
hydrostatic most unstable mode defined by (4.8).

The nonlinear adjustment of the flow is such that eastward jets migrate towards the
geographical equator, while westward jets move slightly in the opposite direction. The
equilibrated state for the perturbation in zonal velocity u is shown in figure 4(a), with
eastward perturbations located on the geographic equator with finite-amplitude jets
of about 6.5 cm s−1. In figure 4(d), the time behaviour of the total zonal velocity at a
given depth and for y = 0 provides evidence that the system undergoes a transition
from a steady unstable basic state without zonal jets to another steady state with
secondary flows. Figures 4(b) and 4(c) correspond respectively to the equilibrated
fields for the overturning streamfunction Ψ and the perturbation in density. The
circulation of the overturning cells is such that the vertical position of westward jets
coincides with meridional outflow away from y = 0, while the vertical position of
eastward jets coincides with meridional inflow towards the equator. The meridional
migration of eastward and westward jets in opposite directions, with a resulting net
offset in their final positions, corresponds to an effective mixing of absolute angular

momentum M̃ with latitude. This is the generic mechanism by which the centrifugal
instability triggered by equatorial shear stabilizes the flow.

Total density ρ + ρ(y, z) is shown in figures 5(a) and 5(b) respectively for time
t = 0 and for the final equilibrated state. Thermal wind balance (2.3), when taking
into account the horizontal Coriolis component, implies that for uz = −γ, the mean
isopycnal surfaces in figure 5(a) display both a curvature, and a meriodional offset
with respect to y = 0. This meridional offset illustrates the coupling between the
barotropic and barolinic components of the basic state when γ 6= 0 (e.g. Miles 1974).
On the other hand, a comparison of figures 4(a) and 5(b) reveals that the inertial
secondary jets have a sizable geostrophic component.

Initial and final fields of fQE are shown in figures 5(c) and 5(d). Initially, the
anomalous PV region extends from y = 0 to y ≈ 78 km , with a minimum of
−1.2 × 10−12 s−2, while in the final state tiny values of fQE are observed inside the
overturning cells and large negative values have been expelled to their boundaries.
These negative values are larger than the initial ones and this result is consistent with
the proof given in Thorpe & Rotunno (1989) that Ertel PV cannot be conserved during
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(a) u(y, z), (b) Ψ (y, z), and (c) ρ(y, z); (d) time history of the zonal velocity pertubation u at a given
point located at the equator.

the process of symmetric instability and that it can be fluxed countergradient because
of nonlinarities. Therefore these dissipative cellular structures both redistribute and
create negative PV values, with characteristics which are quite distinct from those of
a simple downgradient mixing.

We have computed kinetic energy budgets, by multiplying the first two equa-
tions of system (5.1) by respectively u/a and Ψ , and by integrating over the whole
domain. As expected, the driving is provided by the basic-state shear through∫∫
u J(Ψ, u)dydz, while the remaining terms act as sinks (the Coriolis and advective

terms providing no net work). The energy gained from the basic shear is balanced
primarily by Rayleigh damping and by the work against the background stratifica-
tion within the overturning cells (

∫∫
Ψg/ρ0ρydydz), and vertical diffusion is three

times more effective than horizontal diffusion as an energy sink, for our choice of νz
and νy .
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4: (a) at initial time; (b) in the equilibrated state. (c) and (d) Fields of fQE/Ñ0 respectively at the
same times.

Nonlinear advection terms play an essential role in the equilibration of the structures
of figures 4 and 5, since the linearized solutions of system (5.1) can only grow
exponentially with time and therefore cannot equilibrate.

5.2. Role of the large-scale damping

In order to assess the role of the Rayleigh damping term in (5.1), we have performed
another simulation, where we set the Rayleigh damping to zero, so that the only
dissipation mechanism is acting at small scales through Dν . Parameters are in this
case νz = 10−4, νy/νz = 1.5 × 106, r = 0 for the sinks, while the domain geometry
and mean shear remain the same as for the simulation of figures 4 and 5. Results
are shown in figure 6(a–d) and the time series of figure 6(d) again corresponds to
a transition from a steady-state flow to another steady-state flow after a very long
transient oscillation which eventually decays. The final equilibrated fields of figure
6(a–c) reveal that the end state is a superposition of a barotropic latitudinal shear
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flow and secondary overturning cells of weaker amplitude than in figure 4(b), but
with identical vertical scales. It can be seen from figures 6(d) and 4(d) that the main
effects of Rayleigh damping are first, to accelerate the transition between the initial
steady state without jets to the steady state with jets, and secondly, to favour stronger
jet amplitudes. The last result can be understood from considerations of energy
balance, since the driving by the mean shear is compensated by the viscous work
which is now acting both in the overturning cells and in the secondary barotropic
latitudinal shear of figure 6(a). The transient behaviour in figure 6(d) corresponds
to a decaying oscillation of the system between two configurations of the flow
which are respectively a pure barotropic shear perturbation and pure secondary
cellular motions. The final flow regime which is stationary is a mixture of these two
configurations.
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Figure 7. Set-up of the stratified Couette–Taylor experiment (a) and its analogy with the
equatorial latitudinal shear problem (b).

5.3. Analogy with the stratified Couette–Taylor problem

The present subsection details the analogy between the equatorial inertial instability
problem with latitudinal shear and the stratified Couette–Taylor (CT) problem. The
existence of such an analogy immediately explains the preferred vertical stacking of
the deep zonal jets (figure 7). This section may be skipped by readers who are more
interested by the geophysical applications.

Equatorial regions are locations of maximum angular momentum of the planet
and small deviations in the symmetries of the flow are likely to trigger centrifugal
instabilities. Symmetry breaking is immediately induced by the existence of non-zero
mean latitudinal shear at y = 0 and low-latitude regions are thus preferred locations
for the occurrence of inertial instability. On the other hand, the CT problem, which
concerns the flow between two concentric cylinders which can rotate independently,
is the archetype of centrifugal instability.

For the homogeneous fluid problem, the transition from circular Couette flow to
Taylor vortices can be understood in terms of Rayleigh’s criterion, which states that
the inviscid flow is linearly unstable if energy is liberated when two fluid rings of
equal mass at radial distances r and r + dr are exchanged while conserving angular
momentum. In particular, this condition is met if the mean angular momentum
M(r) decreases outwards, as it does for any value of the inner cylinder rotation rate



364 B. L. Hua, D. W. Moore and S. Le Gentil

(Ω1 6= 0), when the outer cylinder is fixed (Ω2 = 0) (see figure 7a). For finite viscosity,
work is done in the exchange, hence M(r) reaches a finite gradient before the flow
goes unstable. Taylor vortices mix the fluid in the interior of the flow, flattening
the profile of M(r), which stabilizes the flow. Therefore in both the equatorial and
CT problems we have the existence of a radial/latitudinal mean shear. Furthermore,
the equatorial linear instability criterion f QE < 0 is satisfied within the latitudinal
domain bounded by y = 0 (where the absolute vorticity Ωa = f − uy = −ε), and
by y = 2 y0 (where Ωa = f − uy = 0). The geographical equator y = 0 is thus the
analogue of the rotating inner cylinder with Ω1 6= 0, while the latitude y = 2y0 is the
analogue of the fixed outer cylinder where Ω2 = 0 (see figure 7b).† In order to have a
valid analogy, we need furthermore the existence of a stable stratification in density
in the axial direction of the concentric cylinders for the CT problem.

The general symmetries which are observed in the flows of wide-gap CT apparatus
(Chossat & Ioss 1994) are also seen in the equatorial problem, namely that the flow
remains invariant in a translation along the vertical/axial direction, in a reflection of
z → −z. This corresponds to

[u(y, z), v(y, z), w(y, z)]→ [u(y,−z), v(y,−z),−w(y, z)]

or equivalently for the zonally symmetric case to

[u,Ψ, ρ]→ [u,−Ψ,−ρ].

Finally, we have assumed zonal/azimuthal symmetry in this work. However, the
analogy between the two systems is not exact because of the difference in the
boundary conditions at the solid cylinders in Couette–Taylor flow and at the internal
boundaries at the latitudes y = 0 and y = 2y0.

A simulation for the stratified CT problem (figure 8a–d) has been performed for
the case of a rotating inner cylinder and fixed outer cylinder, with radius ratio of
R1/R2 = 0.6. Such a configuration corresponds to the same leading terms in the
Taylor expansion of angular momentum M(r) with respect to (r − R1) as those of

the equatorial problem (4.2). The stratification frequency is Ñ0 = 1 s−1 and we have
set Pr = 1. The laboratory experiments of Boubnov et al. (1995) have revealed
that the main effect of an axial density stratification is to reduce the height of the
Taylor vortices and to cause the formation of density layers of small aspect ratio.
Three-dimensional numerical simulations of these experiments are reported in Hua et
al. (1996), along with a detailed study of the Prandtl number effect. For the present
subsection, the simulation has been performed with a two-dimensional version of
a Navier–Stokes code in cylindrical coordinates (Verzicco & Orlandi 1995), in the
presence of a stable axial stratification.

The linear growing modes in the stratified Couette flow case (not shown) are very
similar to the linear modes of the equatorial problem which had been shown in
figure 3(a,b). Furthermore, the nonlinear equilibration patterns of figure 7 display
the same features as those of the equatorial solutions of figure 4. As the amplitudes
of the solutions grow, the mixing of angular momentum induces a radial migration
towards the inner cylinder ‡ of retrograde azimuthal velocity perturbations, which
are superposed on the primary circular Couette flow. On the other hand, prograde
velocity perturbations migrate to the other side to the middle of the gap. One can

† For ε > 0, Ωa < 0 and thus corresponds to a negative angular velocity of the inner cylinder.
‡ The inner cylinder is assumed to rotate in the negative direction in figure 8, consistently with

the previous footnote.
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notice the difference in vertical extension of the prograde and retrograde flows which
is also observed in figure 4(a). The equilibrated finite-amplitude perturbations in
azimuthal velocity, are shown in figure 8(a). Figure 8(d) provides evidence that the
stratified CT system has also undergone a stationary transition from one steady state
to another steady state, which has secondary overturning cells (figure 8b). Therefore
in both the equatorial inertial instability problem and in the stratified CT problem,
zonal/azimuthal flows of opposite signs are offset in their meridional/radial positions
in the nonlinearly equilibrated state. The radial velocity field in the stratified CT
problem of figure 8(b) indicates the levels of radial outflow and inflow: analogously,
the direction of the overturning cells in figure 4 is such that the westward jets
correspond to ‘outflow’ away from the equator, while eastward jets correspond to
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‘inflow’ towards the equator. As commonly observed in the CT apparatus (Tagg
1994), inflow levels are much broader than outflow ones.

The presence of layers can be seen in the density field perturbations (figures 8c and
4c) with a pinching of the isolines at given locations in the vertical. These mixing
layers are very clearly diagnosed in the stratified experiments of Boubnov et al. (1995),
through shadowgraph images which are sensitive to the second spatial derivative of
density. This gradient expulsion of the density field is associated with the existence
of the overturning cell motions of figure 8(b).

5.4. Vertical scale of inertial jets

Questions of geophysical interest are what sets the vertical scale of the jets which are
observed in figure 2(a), and can the result be predicted theoretically? In the presence of
a small-scale turbulence which is parameterized by a second-order diffusion/viscosity,
the scales which are selected at onset of instability have been shown by Dunkerton
(1981) to be accurately retrieved by the approximation σ → σ + νzk

2 in (4.9). This
leads to critical values of wavenumber and shear of

kc = (Ñ0β/4ν
2
z )

1/5, εc =
√

5(2νzÑ2
0β

2)1/5. (5.4)

For a value of νz = 2× 10−4 m2 s−1, this yields

kc = (2π/131 m), εc = 2.05× 10−6 s−1.

We have checked numerically that our values of νy have little impact on the vertical
scale selection, and that we need to take into account the effects of Rayleigh damping
through the approximation σ → σ+ νzk

2 + r in equation (4.9). The critical parameters
for νz = 2× 10−4 m2 s−1, r = 3× 10−7 s−1are found to be

kc = (2π/148 m), εc = 2.39× 10−6 s−1.

These linearly determined scales are corroborated by a direct numerical simulation
with ε = 1.02εc, and for the same values of νz and r as above. The zonal velocity
field is displayed in figure 9(a), confirming a height scale of h ≈150 m at onset of
instability.

However, for larger values of the supercriticality ε/εc, the nonlinear terms induce an
upscale transfer, which is a generic property of two-dimensional nonlinear advection,
e.g. Thorpe & Rotunno (1989). This effect is illustrated in figure 9(b) for a case with
ε/εc = 1.13 and the resulting scale h ≈200 mis such that k/kc = 148/200 ≈ (εc/ε)

5/2.
This height scale of the equilibrated state is smaller than the neutral scale defined by
the reciprocal of the inviscid bound (4.11) and we have

k ≈
√

2k0. (5.5)

Overall, all our simulations which equilibrate to a stationary flow regime are consistent
with (5.5).

For further increase of the supercriticality such that ε/εc > 1.22, the vertical scale
of the secondary jets still increases, but the temporal behaviour of the equilibrated
state changes to an oscillatory state. This is illustrated in figure 9(c) for a case with
ε/εc = 1.33 with a height scale of h ≈ 300 mand we still verify k/kc ≈ (εc/ε)

5/2. The
oscillatory transition (e.g. figure 9d) corresponds to an interaction between different
axial scales and a shear destabilization of the outflow jet can be observed (this
corresponds to the higher-frequency signal in figure 9(d) and this is also seen in the
numerical simulations of the stratified CT problem of Hua et al. 1986). This secondary
Hopf bifurcation of the flow, which follows a primary stationary pitchfork bifurcation
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Figure 9. Zonal velocity fields at equilibration for basic states of supercriticality
ε/εc = 1.02, 1.16, 1.33, respectively (a), (b), (c); the first two cases correspond to stationary flows
while the last case is oscillatory; (d) time history of total zonal velocity field at a point located at
the equator for a case with ε/εc = 1.26.

has also been observed by Zhao & Ghil (1991) in their study of nonlinear symmetric
instability for a different set-up. The precise value of ε/εc for the secondary oscillatory
transition is found to be dependent upon the height scale of the flow, and a more
detailed study of the nature of the bifurcation diagram remains to be performed.

Overall, all our results are consistent with a dependence of the height scale such as

kc/k ∝ Re1/2, (5.6)

where the Reynolds number Re is defined as

Re =
ε5

νzβ2Ñ2
0

. (5.7)

Such a definition of the Reynolds number is dimensionally consistent with both the
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critical condition (5.4) of Dunkerton (1981) and with our result that k/kc ≈ (εc/ε)
5/2

at larger supercriticality. The adjunction of Rayleigh damping can be incorporated
into the quantitative value of the critical Reynolds number at onset of instability,
while the horizontal diffusion coefficient has little quantitative impact on the vertical
scale selection. We note that the scale growth which is implied by (5.6) is commonly
observed in convective systems (e.g. Koshmieder 1993).

For geophysical applications, the relevance of the second-order diffusion and
Rayleigh damping parameterization which have been used in this study may be
questionable. It is more likely that the eddy diffusion, rather than being externally
prescribed, should instead be the result of the ongoing existing inertial instability and
is therefore an integral part of its stabilizing mechanism (see the detailed discussion
in Dunkerton 1981 and Hitchmann et al. 1987). An important result however is that
the equilibration of the secondary jets is strongly dependent on the existence of a
damping mechanism which can act effectively upon the largest scales in contrast with
the second-order diffusion, and such a mechanism is represented here by the Rayleigh
damping term.

6. Discussion
An analysis of the observed distribution of the mean angular momentum of

subthermocline flow leads us to take full account of the non-traditional component of
the Coriolis force, as was originally studied by Bretherton (1964). Other recent studies
which have relaxed the traditional approximation are Colin de Verdière & Schopp
(1995), and White and Bromley (1995). This term provides an inviscid upper bound
for the latitudinal extent of the equatorial region which is susceptible to approach a
zero-potential-vorticity state. This corresponds to a maximum of about 3◦ for the
equatorial ocean.

Other observations in the equatorial regions of both the upper ocean (Gouriou &
Toole 1993) and troposphere (Sardeshmukh & Hoskins 1985) have also been found
to approach zero potential vorticity.

The raison d’être of near-zero Ertel PV values is to allow for transfer of asymmetries
in angular momentum between the two hemispheres and inertial deep jets are the
byproduct of this angular momentum mixing. We remark that this process may work
in the interior of ocean basins, away from meridional boundaries and its existence has
quite different dynamical implications from those of a single critical line at the equator.
More work for determining the extension of tiny-PV regions in both the equatorial
atmosphere, e.g. figure 3(a) of Hoskins (1991), and oceans is needed, while present
observations on other planets like Venus suggest an extension of the zero-Ertel-PV
region up to about 55◦, e.g. Alisson, Del Genio & Zhou (1994). Further discussions of
potential vorticity modelling of convectively driven axisymmetric circulations within
tropical regions can be found in Schubert et al. (1991).

We have shown that a horizontal shear leads to a vertical stacking of finite-
amplitude secondary flows (equatorially trapped jets), while a vertical shear leads to a
meridional stacking of secondary flows (extra-equatorial jets). The final equilibrated
state corresponds to eastward jets located on the geographic equator, while westward
jets are located near the dynamical equator. Such a redistribution of zonal flows
amounts to a mixing of absolute angular momentum. A closer examination of the
observed in situ mean flow of figure 1 reveals indeed that, as already noted by Firing
(1987), eastward flows appear to be closer to the geographical equator than westard
jets which are further north, closer to the dynamical equator at about 0.6◦ latitude.
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Finally, Firing also observes in the time series of zonal flow that transitions of the flow
regime are smooth between states without deep jets and states with their presence
and they do not seem to involve propagation effects. The vertical jets appear to
grow in place. This observation is consistent with the present work which shows
that the inertial instability problem, with our choice of parameterization of sinks, has
the character of a cellular instability, with secondary flows growing in place without
propagation.

The problem of vertical scale selection, in order to explain the scale observed
for the equatorial deep jets, is strongly influenced by the ‘gap width’ or meridional
extent of the unstable region where fQE < 0. We have shown in §5 that, provided
a stable stratification in the axial direction is taken into account, there is a close,
albeit not complete, analogy between the equatorial latitudinal-shear flow and the
stratified Couette–Taylor problem. While the gap width is unambiguously defined for
the CT problem, a possible rationale, which is based on a gap width analogue for
the equatorial problem, would be to select the vertical mode whose equatorial radius
of deformation times

√
2 fits between the geographical and dynamical equators. A

dynamical equator of 0.6◦would correspond to an upper bound for vertical scale of

around 300 m, for Ñ0 = 2×10−3 s−1and β = 2×10−11 m s−1 . This value is consistent
with observations in figure 2(b).

Our explanation which is based on inertial instability coincides with the explanation
given in the equatorial middle atmosphere for explaining the pancake instabilities
(Hitchman et al. 1987; Knox 1996), which have geometric characteristics very similar
to the deep jets. While solsticial shear is invoked to be at the origin of the phenomenon
in the middle atmosphere, the cause of the differences in angular momentum between
the two hemispheres, which lead to a mean latitudinal shear, remains to be elucidated
for the oceanographic case.

The present investigation, as a first step, has chosen the simplifying framework of a
zonally symmetric description, the rationale being that the first transition in stratified
centrifugal instability appears to be clearly axisymmetric. Such an approach has
intrinsic shortcomings, among which is the impossibility of having eastward maxima
right at the equator, i.e. a zonally symmetric model precludes super-rotation with our
choice of sink parameterization and boundary conditions (Held & Hou 1980; Read
1986). In particular, although our mechanism can produce eastward zonal velocity
perturbations, u, near the geographical equator, it will not produce a net eastward
maximum there in u+ u. A side remark, however, is that there is no strong evidence
in figure 2(a) of a super-rotation associated with the deep jets: clear-cut eastward
flows appear in the data only at depths greater than 1300 m, while the small vertical
oscillations in zonal velocity are already visible at depths of 300 m. Recent studies
of inertial instability by Dunkerton (1993) and Clark & Haynes (1996) have relaxed
the zonal-symmetry assumption and shown the existence of local modes of instability
within regions of anomalous potential vorticity.

Although we have opted for a fully non-hydrostatic formulation in this paper, the
aspect ratios of the flows under consideration are such that there is little quantitative
difference between numerical hydrostatic and non-hydrostatic simulations in the range
of values of dissipation parameters which we have used and for the primary stationary
transition. Higher oscillatory transitions can differ quantitatively between the two
formulations.

Finally, we have opted to ‘decouple’ the effects of the vertical shear and horizontal
shear in the present study of equatorial inertial instability, and we leave to future
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investigations a more detailed study of vertical shear, as well as the more complex
situation where both types of shear are present.
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